
Anderson Passos teaches at Miyazaki International College. Correspondence may be sent to: MIC, 1405 Kano, Kiyotake-cho,

Miyazaki-shi, Japan 889-1605, Tel: 0985-85-5931, Fax: 0985-84-3396, Email: apassos@sky.miyazaki-mic.ac.jp

Multi-Language Implementation Framework
for Legacy and New Systems

Anderson Passos

ABSTRACT

Globalization is in the mind of business owners and managers all

over the world. From small family-based companies in the suburb to

big corporations, everyone knows that the world (for now) is the

limit. For these people, using an IT system that speaks their language

is something taken for granted. This paper presents a multi-language

implementation framework that can be used in new as well as legacy

systems. For new systems, it can be an integral part of the

application’s backbone while for legacy systems it can be used as a

totally independent translation system. We will go through some

implementation aspects of our proposed framework without going

too deep into technical details, allowing the reader to understand the

concept without any technical background.

Keywords: language, system development, information technology, translation

Introduction

Around 10 to 15 years ago, companies were struggling to come up with solutions for e-

commerce portals. The word Globalization was in everyone’s mind and the path to it, at least

from a system’s design point of view, was to provide as many languages as possible to users.

Multiple languages or multiple interface languages are not only overseen by Internet

users but also by business owners. It is easy to guess why a Japanese company will not

implement a software solution if such has no support for Japanese language for example. Some

companies like Rakuten, a Japanese Internet shopping mall operator, decided to hold all

internal meetings in English in an effort to become a more global company. We can assume

85

that, for Rakuten, it would not be a problem to implement internal software in which the main

menus and functions are written in English, but this is not feasible for every company.

Purpose of this work

The work introduced here tries not only to address the issue on providing multiple languages in

the same interface for business applications, but also suggests a framework to be used when

implementing such systems. In an attempt to keep the contents of this work reachable for

people without any technical background, pseudo-code will be used instead of actual

programming language code.

Learning through experiencing it

From this author’s personal experience, most projects developed in the period of 1998 to 2006

had one thing in common: They were all trying to keep content separated from functionality.

This is somehow understandable since designers and programmers were, and still are, usually

not very friendly to each other and once a problem in the project is detected program managers

always experience flames flying around.

In 2002, Microsoft released a new programing language/framework called .NET

(pronounced dot net) and one characteristic very welcomed by the developing community was

the code-behind model, in which the content provided by the designer and the functionality

provided by the programmer sit in two (or more) different files. Most programing languages

provide such mechanism direct or indirectly, and the code necessary to deal with multiple-

languages can be put into one of those files providing functionality to the program.

86

Proposed Method

It is important to notice that we will be using a database system as a backbone to implement our

framework. The first thing to define is the structure of our system tables; We will need a table

to hold the available languages in the system (tblSystemLanguage), a second table that will

hold the keys to be replaced in the program’s interface (tblTextKey), and a third table that will

connect both previous tables together (tblSystemText). Figure 1 shows our suggestion for such

table layout.

The idea is that, once the program asks for a given text key (textKey) in a given

language (languageID), our program is able to retrieve such information directly from

tblSystemText if the pair language/key (languageID, textKey) is provided.

The second thing is to define a common function that will be called every time we need

to replace a label in our application. Depending on the programing language chosen this can be

a relatively easy task with a simple function for more procedural ones or classes for object

oriented ones.

Figure 1. Tables necessary for the proposed implementation

87

It is important to mention that the textKey is not necessarily in a

readable/understandable format. The idea of a textKey is that it would serve as a placeholder

inside the text of a program or web page, making it possible to replace as many occurrences of

the same textKey as possible. For example, in Figure 2 we have a login screen showing only

the textKey in the placeholders.

Figure 2. A login page showing only the placeholders for textKeys (left) and the translated text (right)

Our wonder function: getText

Many programing languages provide a function with the same name. It is not our intention to

lead the reader into confusion here. As in the PHP scripting language, getText makes use of

resources sometimes out of reach from some programmers. Things like operational system

resources or even making use of definitions that are loaded in memory (all at once, what

require a lot of system resources) are common. It does not need to be a genius to realize that

more memory you use, slower your application will perform. Furthermore, the use of text files

and operational system resources is heavily discouraged.

Our getText function makes use of a database connection to retrieve a text string based

on its key and the language. Figure 3 shows the pseudo-code for our function. Note that the

first line inside the function says to use an opened database connection. This is a small

technical detail that can determine the performance of an application.

88

function getText(lang, Key){

use an open database connection

get the text string FROM tblSystemText

WHERE Key = textKey AND

lang = languageID

return the string found

}

Figure 3. Pseudo-code for the getText function

Opening and closing a connection for each function call is unnecessary and resource

intensive, resulting in slow performance. To avoid such bottle neck, application programmers

usually open one database connection and reuse it as many times as possible inside their

functions. Of course, implementation depends on the programing language used;

Updating text in an application

Once the tables and function are in place, the process of updating text strings in a program

becomes a trivial thing. It is natural to assume that when paying for a development company to

develop new software, a new interface to manage the languages and the text strings will be

needed. Such cost can be compensated when the organization asking for the development (the

client) has no more to request updates and/or fixes in the menus or labels. Of course it is a case-

by-case scenario and the reader should evaluate which one is more beneficial.

The updates can be done in two different ways. The first possibility is to update all text

strings in a batch mode as shown in Figure 4.

89

Figure 4. One possible output for the administrative interface. Translation can easily be done in batches.

 In case an application has too many languages, the above layout can prove itself

difficult to visualize. As a suggestion, text can be updated in a one-by-one basis, always

showing to the user what key he is updating and for which language like in Figure 5.

Figure 5. Different languages can be edited one by one and still use the proposed framework. Tabs with

the different language allow the user to edit a given text in the corresponding language.

Additional functions

Clearly, additional functions are needed in order to manage the languages, texts and keys in the

database. Table 1 lists the functions implemented during our prototype testing. Additional

functions can be created to add new languages and keys as required.

Figure 6 shows the pseudo code for an optional function called getDefaultLanguage.

This function could be called every time getText is unable to find a translated text. A workflow

exemplifying how this can be achieved is shown in Figure 7.

90

Table 1. Minimum required functions to implement

Function Parameters Explanation

getDefaultLanguage n/a Returns the default languageID. Useful when getText returns no

value for a requested language.

updateText languageID,

textKey, Text

Updates the text for the tuple textKey, Text

 function getDefaultLanguage(){

 return languageID for English

 }

Figure 6. Pseudo-code for the getDefaultLanguage function in case English is defines as the default

system language

START

getText(...)

Do we have a
translation for this

text?

END

getDefaultlanguage()

getText(...) using
default language

Return translated text

NO

YES

Figure 7. Optionally, the system can return a text in its default language in case a translated one is not found

91

Dealing with Legacy Systems

Legacy systems will, inevitably, require changes in the source code to be made. Depending on

the programing language used and the programmer’s skill modules can be created and minor

impact will be felt by end users. For illustration purposes only, an updated HTML code is

shown in Figure 7. This is a very simplistic case where text that was previously displayed in the

page from hard-coded strings is now loaded from a database using our suggested framework.

Figure 7. Old HTML code (left) and updated PHP script using the framework proposed in this study

Final Considerations

Still today, many software developers rely on setting an application interface language to the

user’s system settings even knowing how cumbersome it is. GIMP, an open source image

manipulation tool had it changed only in version 2.7 (not yet released at the time of this

writing). This suggests that not only implementation of background methodologies on how to

change language of a program in run-time has not evolved but also that such feature has been

neglected until today.

The work showed here brings to the table an easy to implement and to understand

framework for developing Multilanguage systems. New systems can have the set of tables and

functions included in its blueprint while legacy systems will require a little bit more work. Such

92

work can be compensated later with the relative cut in time necessary to update a website or

program language strings. For the final user, having a system that he can control by himself can

end up cutting maintenance costs down the road.

References

Minoru Matsutani (2010). “Rakuten to hold all formal internal meetings in English”. The Japan

Times Online, May 18, 2010.

Richard Anderson et. Al. (2002). “Professional ASP.NET 1.0”, Wrox Press

PHP Manual (2012). Control Statements, Retrieved from http://php.net December 2012.

PHP Manual (2012). Gettext functons, Retrieved from http://php.net December 2012.

GNU Image Manipulation Program, GIMP 2.7 Release Notes, Retrieved from

www.gimp.org/release-notes/gimp-2.7.html December 2012

93

